Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36835738

RESUMEN

The fall armyworm is a polyphagous lepidopteran pest that primarily feeds on valuable global crops like maize. Insecticides and transgenic crops have long been a primary option for fall armyworm control, despite growing concerns about transgenic crop resistance inheritance and the rate of insecticide resistance development. Global dissemination of the pest species has highlighted the need for more sustainable approaches to managing overwhelming populations both in their native range and newly introduced regions. As such, integrated pest management programs require more information on natural enemies of the species to make informed planning choices. In this study, we present a cost analysis of the production of three biocontrol agents of the fall armyworm over a year. This model is malleable and aimed towards small-scale growers who might benefit more from an augmentative release of natural enemies than a repetitive use of insecticides, especially since, though the benefits of using either are similar, the biological control option has a lower development cost and is more environmentally sustainable.

2.
Insects ; 13(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36135516

RESUMEN

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a maize pest worldwide. Its host range comprises more than 350 reported plant species, and it is the primary insect pest attacking maize in Florida. Global trade has not only assisted but accelerated its invasion into the Eastern Hemisphere. Regular pesticide use promotes resistance in the species; therefore, there is an urgent need for alternative pest management strategies. This study evaluated the interactions of biological control agents within a similar guild. Some of the reported interactions could potentially lead to the integration of these agents within the same niche to increase biological control efficiency against the fall armyworm. We evaluated three biocontrol agents that are natural enemies of Lepidopteran pests, the true bugs Podisus maculiventris and Euthyrhynchus floridanus (Hemiptera: Pentatomidae) and a parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae). Depending on their intraguild interactions, these agents could potentially be useful for biological control of the fall armyworm. The study investigated these three biocontrol agents and concluded that integrating these agents to control the fall armyworm is a possibility; however, only under certain conditions. Investigations were focused on evaluating the predator-parasitoid and devised pairing interactions. Predator response to prey in a choice or no-choice scenario and choices based on olfaction or other bodily cues were studied under experimental laboratory conditions.

3.
J Econ Entomol ; 114(2): 922-927, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33686398

RESUMEN

The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a serious threat to the honey bee industry, which relies on chemicals for the control of major honey bee pests. We developed a glass vial bioassay for resistance monitoring of adult A. tumida populations in honey bee colonies. We also determined concentrations that could be used to discriminate between susceptible and resistant strains. These include the pyrethroids cypermethrin (25.0 µg per vial) and fluvalinate (25.0 µg per vial) and the organophosphates malathion (10.0 µg per vial), chlorpyrifos (2.5 µg per vial), and coumaphos (25.0 µg per vial). Here, we report that resistance to fluvalinate and coumaphos was widespread in A. tumida populations in Florida in 2019. Aethina tumida populations were still susceptible to cypermethrin, malathion, and chlorpyrifos. The levels of resistance differed between pyrethroid and organophosphate insecticides. Over the last 10 yr, A. tumida populations have developed 43.7-fold resistance to coumaphos and 5.4-fold to fluvalinate. The levels of insecticide resistance were not similar within insecticides in the same class, which suggest that this type of resistance is manageable. Our results demonstrate the usefulness of glass vial bioassays to detect resistance in adult A. tumida and provide the foundation for a resistance management strategy. To the best of our knowledge, this is the first report of insecticide resistance in small hive beetle populations and suggests an urgent need for alternative control strategies for these serious pests of honey bee colonies.


Asunto(s)
Escarabajos , Insecticidas , Piretrinas , Animales , Abejas , Florida , Resistencia a los Insecticidas , Organofosfatos
4.
Insects ; 12(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406598

RESUMEN

Comperiella calauanica is a host-specific endoparasitoid and effective biological control agent of the diaspidid Aspidiotus rigidus, whose outbreak from 2010 to 2015 severely threatened the coconut industry in the Philippines. Using the maximum entropy (Maxent) algorithm, we developed a species distribution model (SDM) for C. calauanica based on 19 bioclimatic variables, using occurrence data obtained mostly from field surveys conducted in A. rigidus-infested areas in Luzon Island from 2014 to 2016. The calculated the area under the ROC curve (AUC) values for the model were very high (0.966, standard deviation = 0.005), indicating the model's high predictive power. Precipitation seasonality was found to have the highest relative contribution to model development. Response curves produced by Maxent suggested the positive influence of mean temperature of the driest quarter, and negative influence of precipitation of the driest and coldest quarters on habitat suitability. Given that C. calauanica has been found to always occur with A. rigidus in Luzon Island due to high host-specificity, the SDM for the parasitoid may also be considered and used as a predictive model for its host. This was confirmed through field surveys conducted between late 2016 and early 2018, which found and confirmed the occurrence of A. rigidus in three areas predicted by the SDM to have moderate to high habitat suitability or probability of occurrence of C. calauanica: Zamboanga City in Mindanao; Isabela City in Basilan Island; and Tablas Island in Romblon. This validation in the field demonstrated the utility of the bioclimate-based SDM for C. calauanica in predicting habitat suitability or probability of occurrence of A. rigidus in the Philippines.

5.
Insects ; 11(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33142981

RESUMEN

The coconut scale insect, Aspidiotus rigidus Reyne, caused a major pest outbreak in coconut plantations and stands in the Southern Tagalog region of Luzon Island in the Philippines between 2010 and 2015. To determine if parasitism by Comperiella calauanica Barrion, Almarinez and Amalin, a native encyrtid, could have been a factor in the eventual management of the outbreak by 2015, we estimated and assessed its parasitization levels on A. rigidus colonies on field-collected samples from selected points in three provinces in the Southern Tagalog Region across three sampling periods. We observed that C. calauanica consistently occurred only in areas where A. rigidus populations occurred, with high parasitization levels in the Southern Tagalog sites from 2014 to 2015. Results of correlation and regression of total scale count against parasitized scale count suggest putative host density-dependent parasitism by C. calauanica in the field. A marked decrease in the abundance of A. rigidus was recorded concurrently with visually observable recovery of coconut trees from the third quarter of 2014 up to the second quarter of 2016. Similar results of significant reduction in A. rigidus populations concurrent with high percent parasitization by mass-reared and released C. calauanica were found in the Zamboanga Peninsula from 2018 to 2020. Our findings and observations altogether suggest that host-specific parasitization by C. calauanica effected biological control, which may have contributed to the eventual management of the A. rigidus outbreak in the Southern Tagalog Region, and also in the Zamboanga Peninsula where similar recovery of coconut trees were observed within a year after inoculative releases of C. calauanica.

6.
Insects ; 11(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238485

RESUMEN

The whitefly, Bemisia tabaci, has developed resistance to many insecticides, renewing interest in the biological control of this global pest. Generalist predators might contribute to whitefly suppression if they commonly occur in infested fields and generally complement rather than interfere with specialized natural enemies. Here, we review literature from the last 20 years, across US cropping systems, which considers the impacts of generalist predators on B. tabaci. Laboratory feeding trials and molecular gut content analysis suggest that at least 30 different generalist predator species willingly and/or regularly feed on these whiteflies. Nine of these predators appear to be particularly impactful, and a higher abundance of a few of these predator species has been shown to correlate with greater B. tabaci predation in the field. Predator species often occupy complementary feeding niches, which would be expected to strengthen biocontrol, although intraguild predation is also common and might be disruptive. Overall, our review suggests that a bio-diverse community of generalist predators commonly attacks B. tabaci, with the potential to exert substantial control in the field. The key challenge will be to develop reduced-spray plans so that generalist predators, and other more specialized natural enemies, are abundant enough that their biocontrol potential is realized.

7.
Insects ; 11(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957431

RESUMEN

Honey bees are of great economic importance, not only for honey production but also for crop pollination. However, honey bee populations continue to decline mainly due to exposure to pesticides, pathogens and beekeeping practices. In this study, total soluble protein was measured, total RNA was extracted and first-strand cDNAs were generated. Quantitative PCR was used to assess the relative expression (transcript abundances) of immune function-related genes in honey bees collected from organically and conventionally managed hives. Honey bees collected from conventionally managed hives with 0% Varroa mite infestation levels displayed an upregulated expression of the prophenoloxidase gene (cellular defense). Similarly, honey bees collected from organically managed hives had increased levels of the vitellogenin gene (immune function and longevity). The gene expression for malvolio (sucrose responsiveness) was highest in organically managed hives with 0% Varroa mite infestations. Young adult bees collected from organically managed hives with 5% Varroa mite infestation levels had upregulated expressions of the gene spaetzle, whereas bees from similarly infested, conventionally managed hives did not, suggesting that honey bees from organically managed hives could mount an immune response. In young adult bees collected from organically managed hives only, the expression of the immune deficiency gene (antimicrobial defense) was upregulated. The relative gene expression for superoxide dismutase 1 increased in young adult bees collected from hives with 5% Varroa mite infestation levels as expected. However, for superoxide dismutase 2, there was a high level of gene expression in adult bees from both conventionally managed hives with 0% Varroa mite infestation levels and organically managed hives with 5% Varroa mite infestations. The gene CYP9Q3 (pesticide detoxification) that metabolizes coumaphos and fluvalinate was upregulated in adult bees collected from organically managed bees. Overall, these findings provide useful insights into the genetic response of honey bees to some environmental stressors and could be an important component of best beekeeping practices that intend to enhance honey bee health.

8.
Environ Entomol ; 48(2): 343-350, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30753472

RESUMEN

Sunn hemp, Crotalaria juncea L., is a warm-season legume that can be planted in rotation to cash crops to add nitrogen and organic matter to the soils, for weed growth prevention, and to suppress nematode populations. Sunn hemp flowers also provide nectar and pollen for pollinators and enhance biological control by furnishing habitat for natural enemies. Experiments were conducted in Northern and North Central Florida to evaluate bee populations that visited flowers within mixed plots of sunn hemp and sorghum-sudangrass and plots of two sunn hemp germplasm lines. Collections of bees that visited 'AU Golden' and Tillage Sunn flowers indicated that Xylocopa virginica (L.) (Hymenoptera: Apidae), Xylocopa micans Lepeletier (Hymenoptera: Apidae), Megachile sculpturalis Smith (Hymenoptera: Megachilidae), Megachile mendica (Cresson) (Hymenoptera: Megachilidae), and Megachile georgica Cresson (Hymenoptera: Megachilidae) were present in large numbers in May through July and then again in October. Although Tillage Sunn seeds planted in March flowered in May, percent bloom and number of bee visits were low. Compared with short day sunn hemp cultivars, 'AU Golden' plants produced flowers early in the season to provide food and habitat for pollinators and have the potential to produce an abundant seed crop in Northern and North Central Florida.


Asunto(s)
Abejas , Fabaceae , Polinización , Animales , Florida
9.
Environ Entomol ; 41(3): 669-75, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22732626

RESUMEN

Delphastus catalinae (Horn) is a coccinellid predator that is commercially sold for the management of whiteflies. A study was conducted to assay the effect of selected diets on the survival of adult D. catalinae. Treatments of water (as a control), 10% honey, honeydew, and whiteflies [Bemisia tabaci (Gennadius)] were provided to the beetles in laboratory assays. Newly emerged, unfed adult insects were used at the start of a survival experiment with trials lasting 50 d. Another survival experiment used mixed-aged adults from a greenhouse colony, and the trials lasted 21 d. Survival was poor on a diet of solely water; ~1% survived beyond a week at 26°C. Survival using the newly emerged insects was similar between those fed honeydew and honey diets, but those on the whitefly diet had the greatest survival (~60% on day 50). However, in the experiment with mixed-aged beetles, adults on honey, and whitefly diets performed the same over a 21-d experiment. Excluding those on the water diet, survival of beetles on the various diets ranged from ~50-80% after 21 d. In an open choice assay across 7 h, D. catalinae adults were found on the whitefly diet in a much greater incidence than on the other diets, and the number of beetles found on the whitefly diet increased over time. The data supports that when D. catalinae are employed in greenhouses or fields for whitefly management, during low prey populations, honeydew from the whitefly can help sustain the population of this predator. Moreover, a supplemental food such as a honey solution can help sustain the population of D. catalinae when the prey is decreased to low numbers. These results may help in the development of strategies to enhance the utility of predators for the management of whiteflies.


Asunto(s)
Escarabajos/fisiología , Control Biológico de Vectores , Animales , Escarabajos/crecimiento & desarrollo , Dieta , Conducta Alimentaria , Hemípteros/crecimiento & desarrollo , Hemípteros/metabolismo , Miel , Longevidad , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...